AI That Delivers Value, Not Vanity.

Helping ambitious organisations discover, design, deploy, and integrate AI initiatives that solve real business challenges.

Integrating AI is both the greatest opportunity, and the toughest challenge

AI is on every boardroom agenda. But ambition alone doesn’t deliver results. Most organisations stall because they lack the foundations to turn AI experiments into real business impact.

$4.4T

Estimated global productivity gains from corporate AI use cases.

$4.4T

Estimated global productivity gains from corporate AI use cases.

$4.4T

Estimated global productivity gains from corporate AI use cases.

1.5X

Early adopters of AI are growing revenue 1.5x faster than peers.

1.5X

Early adopters of AI are growing revenue 1.5x faster than peers.

1.5X

Early adopters of AI are growing revenue 1.5x faster than peers.

4X

Faster adoption of AI than desktop internet.

4X

Faster adoption of AI than desktop internet.

4X

Faster adoption of AI than desktop internet.

1%

Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.

1%

Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.

1%

Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.

Why Us

Why Us

Making AI Work For Business

AI has the power to transform industries, but real impact requires more than technology alone. At Orbital Studio, we bring together the precision of data and engineering with the insight of business and industry expertise.

Our approach starts with understanding the problem - where AI can deliver measurable value, how it will integrate, and what success looks like in practice. From there, our team designs and delivers solutions that are secure, compliant, and built to scale.

The result is not just pilots or experiments, but AI that drives efficiency, fuels innovation, and strengthens long-term competitiveness.

Trusted by

  • European Comission
    Alation

What We Do

What We Do

Solutions Tailored For Impact

Solutions Tailored For Impact

From strategy to scale, we deliver AI solutions that turn ambition into measurable business value.

From strategy to scale, we deliver AI solutions that turn ambition into measurable business value.

Strategic Agentic Assessment

We identify the highest-value agentic opportunities, validate ROI, and build adoption roadmaps that align AI with business outcomes.

Analyzing ROI

Value Mapping

Data Readiness

Workflow Bottlenecks

Adoption Feasibility

Compliance and Risks

Analyzing ROI

Value Mapping

Data Readiness

Workflow Bottlenecks

Adoption Feasibility

Compliance and Risks

Agentic Ready Data Engineering

We build agent-ready data infrastructure, real-time pipelines, vector stores, and knowledge graphs, that enable AI agents to observe, learn, and act autonomously.

Data Lake

Ingesting 1.2M records/hr

ETL Pipeline

Last run 2 mins ago

Warehouse

Query latency 120ms

Data Lake

Ingesting 1.2M records/hr

ETL Pipeline

Last run 2 mins ago

Warehouse

Query latency 120ms

Model Fine-Tuning & Optimization

We fine-tune LLMs for precision and efficiency - training models on your data for better accuracy, deploying smaller fine-tuned models to cut costs, and optimizing performance for your specific use cases.

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

AI Agents Deployment

We design and deploy custom AI agents and agentic workflows that integrate with your data and tools, automate complex tasks, make intelligent decisions, and deliver measurable business impact.

Our Expertise

Our Expertise

Combining industry insight with technical depth to deliver AI solutions that work in the real world.

Combining industry insight with technical depth to deliver AI solutions that work in the real world.

Strategic Agentic Assessment

AI Capability Enhancement

AI Strategy & Transformation

Rapid Prototyping & Validation

AI Capability Enhancement

AI Strategy & Transformation

Rapid Prototyping & Validation

AI Capability Enhancement

AI Strategy & Transformation

Rapid Prototyping & Validation

Agentic Ready Data Engineering

Real-Time Data Pipelines

Vector Stores & Knowledge Graphs

Agent-Native Infrastructure

Real-Time Data Pipelines

Vector Stores & Knowledge Graphs

Agent-Native Infrastructure

Real-Time Data Pipelines

Vector Stores & Knowledge Graphs

Agent-Native Infrastructure

Model Fine-Tuning & Optimisation

Custom Model Development

Efficient Model Optimisation

Performance Enhancement & Validation

MLOps for Fine-Tuned Models

Custom Model Development

Efficient Model Optimisation

Performance Enhancement & Validation

MLOps for Fine-Tuned Models

Custom Model Development

Efficient Model Optimisation

Performance Enhancement & Validation

MLOps for Fine-Tuned Models

AI Agents Deployment

Autonomous Agents & Workflow Orchestration

Enterprise Agent Integration and MCPs

Impact-Driven Optimisation

Autonomous Agents & Workflow Orchestration

Enterprise Agent Integration and MCPs

Impact-Driven Optimisation

Autonomous Agents & Workflow Orchestration

Enterprise Agent Integration and MCPs

Impact-Driven Optimisation

Our Approach

Our Approach

Approach That Works

Approach That Works

We connect business insight with technical excellence, guiding AI from idea to enterprise-ready solution.

We connect business insight with technical excellence, guiding AI from idea to enterprise-ready solution.

Findings

High Impact / Quick Wins

  • Manual Data Processing

    High time cost identified

  • Customer Service Queries

    40% could be automated

  • Compliance Checks

    Delayed by manual review

  • Reporting Bottlenecks

    Reports delivered with 3-day lag

  • Revenue Leakage

    Missed upsell signals detected

Findings

High Impact / Quick Wins

  • Manual Data Processing

    High time cost identified

  • Customer Service Queries

    40% could be automated

  • Compliance Checks

    Delayed by manual review

  • Reporting Bottlenecks

    Reports delivered with 3-day lag

  • Revenue Leakage

    Missed upsell signals detected

Findings

High Impact / Quick Wins

  • Manual Data Processing

    High time cost identified

  • Customer Service Queries

    40% could be automated

  • Compliance Checks

    Delayed by manual review

  • Reporting Bottlenecks

    Reports delivered with 3-day lag

  • Revenue Leakage

    Missed upsell signals detected

Diagnose & Prioritize

We identify the challenges and opportunities where AI can create the greatest impact and ROI.

Design & Prototype

We build lean prototypes to validate feasibility and de-risk investments before scaling.

What can I help with?

|

Add document

Analyze

Generate Image

research

What can I help with?

|

Add document

Analyze

Generate Image

research

What can I help with?

|

Add document

Analyze

Generate Image

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

  • import mlflow, numpy as np, pandas as pd
    from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV
    from sklearn.pipeline import Pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_score
    from sklearn.inspection import permutation_importance
    from mlflow.models.signature import infer_signature

    def train_and_register(df, num, cat, target, model_name, experiment):
    np.random.seed(42); mlflow.set_experiment(experiment)
    assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"
    X, y = df[num+cat], df[target]
    pre = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
    ("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)
    ] )

    base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)
    pipe = Pipeline([("prep", pre), ("clf", base)])
    Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    search = RandomizedSearchCV(
    pipe,
    {"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},
    n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0
    )

    with mlflow.start_run(tags={"stage": "train"}):
    search.fit(Xtr, ytr); best = search.best_estimator_
    proba = best.predict_proba(Xte)[:, 1]
    thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)
    scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}
    thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)
    metrics = {
    "auc": roc_auc_score(yte, proba),
    "pr_auc": average_precision_score(yte, proba),
    "f1": f1_score(yte, yhat),
    "precision": precision_score(yte, yhat),
    "recall": recall_score(yte, yhat),
    "threshold": float(thr)
    }

    for k,v in metrics.items(): mlflow.log_metric(k, float(v))
    mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")
    imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)
    fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()
    mlflow.log_dict({"top_features": fi}, "feature_importance.json")
    sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])
    mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)

Engineer & Scale

We develop production-ready AI systems, supported by clean data pipelines and MLOps best practices.

Integrate & Grow

We embed AI into workflows, train teams, and ensure adoption delivers lasting business value.

Data Lake

Ingesting 1.2M records/hr

ETL Pipeline

Last run 2 mins ago

Warehouse

Query latency 120ms

Data Lake

Ingesting 1.2M records/hr

ETL Pipeline

Last run 2 mins ago

Warehouse

Query latency 120ms

Data Lake

Ingesting 1.2M records/hr

ETL Pipeline

Last run 2 mins ago

Warehouse

Query latency 120ms

Case Studies

Case Studies

Our Impact

Our Impact

See how we’ve helped clients turn AI ambition into real-world results

See how we’ve helped clients turn AI ambition into real-world results

AI-Powered Compliance Manager for the European Commission

A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.

AI-Powered Compliance Manager for the European Commission

A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.

AI-Powered Compliance Manager for the European Commission

A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.

Connect With Our Team

Book a call to explore how AI can be integrated into your operations at speed and scale.