AI That Delivers Value, Not Vanity.
Helping ambitious organisations discover, design, deploy, and integrate AI initiatives that solve real business challenges.
Integrating AI is both the greatest opportunity, and the toughest challenge
AI is on every boardroom agenda. But ambition alone doesn’t deliver results. Most organisations stall because they lack the foundations to turn AI experiments into real business impact.
$4.4T
Estimated global productivity gains from corporate AI use cases.
$4.4T
Estimated global productivity gains from corporate AI use cases.
$4.4T
Estimated global productivity gains from corporate AI use cases.
1.5X
Early adopters of AI are growing revenue 1.5x faster than peers.
1.5X
Early adopters of AI are growing revenue 1.5x faster than peers.
1.5X
Early adopters of AI are growing revenue 1.5x faster than peers.
4X
Faster adoption of AI than desktop internet.
4X
Faster adoption of AI than desktop internet.
4X
Faster adoption of AI than desktop internet.
1%
Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.
1%
Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.
1%
Of organizations consider themselves “mature” in AI, with systems fully integrated and delivering at scale.




Why Us
Why Us
Making AI Work For Business
AI has the power to transform industries, but real impact requires more than technology alone. At Orbital Studio, we bring together the precision of data and engineering with the insight of business and industry expertise.
Our approach starts with understanding the problem - where AI can deliver measurable value, how it will integrate, and what success looks like in practice. From there, our team designs and delivers solutions that are secure, compliant, and built to scale.
The result is not just pilots or experiments, but AI that drives efficiency, fuels innovation, and strengthens long-term competitiveness.
Trusted by
What We Do
What We Do
Solutions Tailored For Impact
Solutions Tailored For Impact
From strategy to scale, we deliver AI solutions that turn ambition into measurable business value.
From strategy to scale, we deliver AI solutions that turn ambition into measurable business value.
Strategic Agentic Assessment
We identify the highest-value agentic opportunities, validate ROI, and build adoption roadmaps that align AI with business outcomes.
Analyzing ROI
Value Mapping
Data Readiness
Workflow Bottlenecks
Adoption Feasibility
Compliance and Risks
Analyzing ROI
Value Mapping
Data Readiness
Workflow Bottlenecks
Adoption Feasibility
Compliance and Risks
Agentic Ready Data Engineering
We build agent-ready data infrastructure, real-time pipelines, vector stores, and knowledge graphs, that enable AI agents to observe, learn, and act autonomously.
Data Lake
Ingesting 1.2M records/hr
ETL Pipeline
Last run 2 mins ago
Warehouse
Query latency 120ms
Data Lake
Ingesting 1.2M records/hr
ETL Pipeline
Last run 2 mins ago
Warehouse
Query latency 120ms
Model Fine-Tuning & Optimization
We fine-tune LLMs for precision and efficiency - training models on your data for better accuracy, deploying smaller fine-tuned models to cut costs, and optimizing performance for your specific use cases.
- import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 - import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 
- import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 - import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 
AI Agents Deployment
We design and deploy custom AI agents and agentic workflows that integrate with your data and tools, automate complex tasks, make intelligent decisions, and deliver measurable business impact.
Our Expertise
Our Expertise
Combining industry insight with technical depth to deliver AI solutions that work in the real world.
Combining industry insight with technical depth to deliver AI solutions that work in the real world.
Strategic Agentic Assessment
AI Capability Enhancement
AI Strategy & Transformation
Rapid Prototyping & Validation
AI Capability Enhancement
AI Strategy & Transformation
Rapid Prototyping & Validation
AI Capability Enhancement
AI Strategy & Transformation
Rapid Prototyping & Validation
Agentic Ready Data Engineering
Real-Time Data Pipelines
Vector Stores & Knowledge Graphs
Agent-Native Infrastructure
Real-Time Data Pipelines
Vector Stores & Knowledge Graphs
Agent-Native Infrastructure
Real-Time Data Pipelines
Vector Stores & Knowledge Graphs
Agent-Native Infrastructure
Model Fine-Tuning & Optimisation
Custom Model Development
Efficient Model Optimisation
Performance Enhancement & Validation
MLOps for Fine-Tuned Models
Custom Model Development
Efficient Model Optimisation
Performance Enhancement & Validation
MLOps for Fine-Tuned Models
Custom Model Development
Efficient Model Optimisation
Performance Enhancement & Validation
MLOps for Fine-Tuned Models
AI Agents Deployment
Autonomous Agents & Workflow Orchestration
Enterprise Agent Integration and MCPs
Impact-Driven Optimisation
Autonomous Agents & Workflow Orchestration
Enterprise Agent Integration and MCPs
Impact-Driven Optimisation
Autonomous Agents & Workflow Orchestration
Enterprise Agent Integration and MCPs
Impact-Driven Optimisation
Our Approach
Our Approach
Approach That Works
Approach That Works
We connect business insight with technical excellence, guiding AI from idea to enterprise-ready solution.
We connect business insight with technical excellence, guiding AI from idea to enterprise-ready solution.
Findings
High Impact / Quick Wins
Manual Data Processing
High time cost identified
Customer Service Queries
40% could be automated
Compliance Checks
Delayed by manual review
Reporting Bottlenecks
Reports delivered with 3-day lag
Revenue Leakage
Missed upsell signals detected
Findings
High Impact / Quick Wins
Manual Data Processing
High time cost identified
Customer Service Queries
40% could be automated
Compliance Checks
Delayed by manual review
Reporting Bottlenecks
Reports delivered with 3-day lag
Revenue Leakage
Missed upsell signals detected
Findings
High Impact / Quick Wins
Manual Data Processing
High time cost identified
Customer Service Queries
40% could be automated
Compliance Checks
Delayed by manual review
Reporting Bottlenecks
Reports delivered with 3-day lag
Revenue Leakage
Missed upsell signals detected
Diagnose & Prioritize
We identify the challenges and opportunities where AI can create the greatest impact and ROI.
Design & Prototype
We build lean prototypes to validate feasibility and de-risk investments before scaling.

What can I help with?
Add document
Analyze
Generate Image
research

What can I help with?
Add document
Analyze
Generate Image
research

What can I help with?
Add document
Analyze
Generate Image
- import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 - import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 
- import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 - import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 
- import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 - import mlflow, numpy as np, pandas as pdfrom sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.compose import ColumnTransformerfrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import roc_auc_score, average_precision_score, f1_score, precision_score, recall_scorefrom sklearn.inspection import permutation_importancefrom mlflow.models.signature import infer_signaturedef train_and_register(df, num, cat, target, model_name, experiment):np.random.seed(42); mlflow.set_experiment(experiment)assert set(num+cat+[target]).issubset(df.columns), "Schema mismatch"X, y = df[num+cat], df[target]pre = ColumnTransformer([("num", Pipeline([("imp", SimpleImputer()), ("sc", StandardScaler())]), num),("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),("oh", OneHotEncoder(handle_unknown="ignore", sparse_output=False))]), cat)] )base = LogisticRegression(max_iter=2000, class_weight="balanced", n_jobs=None)pipe = Pipeline([("prep", pre), ("clf", base)])Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)search = RandomizedSearchCV(pipe,{"clf__C": np.logspace(-3, 2, 30), "clf__penalty": ["l2"], "clf__solver": ["lbfgs"]},n_iter=12, scoring="roc_auc", cv=skf, n_jobs=-1, refit=True, verbose=0)with mlflow.start_run(tags={"stage": "train"}):search.fit(Xtr, ytr); best = search.best_estimator_proba = best.predict_proba(Xte)[:, 1]thresholds = np.clip(np.quantile(proba, [0.3,0.4,0.5,0.6,0.7]), 0, 1)scores = {t: f1_score(yte, (proba>t).astype(int)) for t in thresholds}thr = max(scores, key=scores.get); yhat = (proba>thr).astype(int)metrics = {"auc": roc_auc_score(yte, proba),"pr_auc": average_precision_score(yte, proba),"f1": f1_score(yte, yhat),"precision": precision_score(yte, yhat),"recall": recall_score(yte, yhat),"threshold": float(thr)}for k,v in metrics.items(): mlflow.log_metric(k, float(v))mlflow.log_params(search.best_params_); mlflow.log_dict(scores, "threshold_f1.json")imp = permutation_importance(best, Xte, yte, n_repeats=5, random_state=42)fi = pd.Series(imp.importances_mean, index=best.named_steps["prep"].get_feature_names_out()).nlargest(15).to_dict()mlflow.log_dict({"top_features": fi}, "feature_importance.json")sig = infer_signature(Xtr.sample(min(200, len(Xtr))), best.predict_proba(Xtr.sample(min(200, len(Xtr))))[:,1])mlflow.sklearn.log_model(best, "model", signature=sig, registered_model_name=model_name)
 
Engineer & Scale
We develop production-ready AI systems, supported by clean data pipelines and MLOps best practices.
Integrate & Grow
We embed AI into workflows, train teams, and ensure adoption delivers lasting business value.
Data Lake
Ingesting 1.2M records/hr
ETL Pipeline
Last run 2 mins ago
Warehouse
Query latency 120ms
Data Lake
Ingesting 1.2M records/hr
ETL Pipeline
Last run 2 mins ago
Warehouse
Query latency 120ms
Data Lake
Ingesting 1.2M records/hr
ETL Pipeline
Last run 2 mins ago
Warehouse
Query latency 120ms
Case Studies
Case Studies
Our Impact
Our Impact
See how we’ve helped clients turn AI ambition into real-world results
See how we’ve helped clients turn AI ambition into real-world results


AI-Powered Compliance Manager for the European Commission
A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.


AI-Powered Compliance Manager for the European Commission
A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.


AI-Powered Compliance Manager for the European Commission
A directorate at the European Commission needed a more effective way to monitor and enforce regulatory compliance across diverse industries.
Connect With Our Team
Book a call to explore how AI can be integrated into your operations at speed and scale.



















